Abstract
The processes of formation (and decomposition) of methane hydrate from water adsorbed in the pores of spherical granules of mesoporous alumina (Al2O3) have been investigated using the low-field NMR spin–spin relaxation time (T2) and DSC methods. Analysis of the obtained data showed that changes observed in the relaxation time spectra represent a strong case in favor of the model envisaging hydrate growth in pore spaces without conspicuous water transfer through the volume content of the sample with mesoporous structure. As the supercooling strength of the liquid phase enhances, the size of the pores in which hydrate formation takes place decreases. At this, the size of the hydrate particles previously formed in larger pores tends to increase. Hydrate nucleation was shown to be followed by intensive and rapid hydrate formation in some parts of the alumina granules in the sample. The “skipping” mechanism of hydrate formation between granules remains unclear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.