Abstract

Infectious diseases and the rapid development of pathogens resistant to conventional drugs are a serious global public health problem, which motivates the search for new pharmacological agents. In this context, cationic peptides without disulfide bridges from different species of scorpion venom have been the target of scientific studies due to their multifunctional activities. Stigmurin is a linear peptide composed of 17 amino acid residues (Phe-Phe-Ser-Leu-Ile-Pro-Ser-Leu-Val-Gly-Gly-Leu-Ile-Ser-Ala-Phe-Lys-NH2), which is present in the venom gland of the scorpion Tityus stigmurus. Here we present investigations of the in vitro antioxidant action of Stigmurin together with the in vivo antibacterial and healing activity of this peptide in a wound infection model induced by Staphylococcus aureus. In addition, we have reports for the first time of the three-dimensional structure determined by NMR spectroscopy of a peptide without disulfide bridges present in scorpion venom from the Tityus genus. Stigmurin showed hydroxyl radical scavenging above 70 % at 10 μM and antibiotic action in the skin wound, reducing the number of viable microorganisms by 67.2 % on the 7 day after infection. Stigmurin (1 μg / μL) increased the retraction rate of the lesion, with wound area reduction of 43 % on the second day after skin injury, which indicates its ability to induce tissue repair. Stigmurin in trifluoroethanol:water exhibited a random conformation at the N-terminus region (Phe1 to Pro6), with a helical structure from Ser7 to Phe16. This structural information, allied with the multifunctional activity of Stigmurin, makes it an attractive candidate for the design of novel therapeutic agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.