Abstract

Two diastereomers of a photoresponsive oligodeoxyribonucleotide tethering a trans-azobenzene, based on the chirality of the central carbon of a diol linker, were separated by reversed-phase HPLC. On the basis of 2D NMR analysis, absolute configurations of the diastereomers alpha and beta (tentatively designated from differences in their retention time) were determined as R- and S-forms, respectively. For both diastereomers, their NMR-determined duplex structure showed that trans-azobenzene intercalates between base pairs, because distinct NOEs were observed between the protons of azobenzene and those of the adjacent base pairs, such as with the imino protons and methyl protons of thymine. The melting temperatures of both duplexes were higher than that of the corresponding native duplex, which contained no azobenzene residue, due to the intercalated trans-azobenzene stabilizing the duplex by a stacking interaction. Between these two diastereomers, differences in T(m) were also found: the melting temperature of the R-form duplex (alpha-isomer) was higher than that of the S-form (beta-isomer). On the basis of the NMR-determined structure, this difference was attributed to the fact that the S-form (beta isomer) causes more stress forming the duplex than does the R-form (alpha isomer) due to disturbances of the right-hand helix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.