Abstract

We report Cu and Te NMR measurements on Cu2-xTe with x between 0.13 and 0.22. Aided by powder x-ray analysis and computed NMR quadrupole shifts, a structure change near x=0.20 was found consistent with structures reported by Baranova, with best fits to the β-I structure for x=0.22 and β-III for smaller x. NMR T1 and Hall effect results demonstrate p-type electronic behavior with filling of simple hole pockets induced by increased numbers of vacancies for both phases. Furthermore the Cu and Te chemical shifts are large and negative, as observed in topologically inverted semiconductors, with a splitting into two distinct local environments for both Cu and Te sites in the x=0.22 structure. Cu T1 results show a rapid decrease of the energy barrier for initiation of Cu ion hopping to 0.12eV for x=0.22, considerably smaller than observed at higher temperatures, indicating a tail of relatively mobile Cu ions which may be of significance for potential device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.