Abstract
We report the results of 31P-nuclear magnetic resonance (NMR) measurements on heavy fermion compound EuNi2P2 in order to investigate the magnetic properties at low temperatures from a microscopic view point. The Knight shift has a negative value in an entire temperature range, and the absolute value increases with decreasing temperature but exhibits a broad maximum around 40 K, which is similar to the behavior of the magnetic susceptibility. Also, the nuclear spin-lattice relaxation rate 1/T1 is almost constant at high temperatures above 200 K, which is reminiscent of the relaxation mechanism dominated by the interaction of the 31P nucleus with fluctuating Eu-4f moments. Below 200 K, 1/T1 gradually decreases on cooling due to the change of the valence in the Eu ion. At low temperatures, 1/T1 does not obey the Korringa relation, in contrast to typical heavy fermion compounds. The nuclear spin-spin relaxation rate 1/T2 shows the similar behavior as 1/T1 at high temperatures. But, below 50 K, 1/T2 increases upon cooling due to the development of the magnetic excitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.