Abstract

Static and magic angle spinning (MAS) nuclear magnetic resonance (NMR) experiments were carried out on 1H, 13C, and 14N nuclei in order to understand the structural changes of the N(CH3)4 groups in [N(CH3)4]2CoBr4 near the ferroelastic phase transition temperature TC. The two chemically inequivalent N(CH3)4 groups were distinguished using 13C cross-polarization/(CP)MAS and 14N static NMR. The changes in chemical shifts, line intensities, and the spin-lattice relaxation time near TC can be correlated with the changing structural geometry, which underlies the phase transition. The 14N NMR spectra indicated a crystal symmetry change at TC, which is related to the ferroelastic domain with different orientations of the N(CH3)4 groups. The ferroelastic domain walls were confirmed by optical polarizing microscopy, and the wall orientations were described by the Sapriel theory. The transition to the ferroelastic phase was found to be related to the orientational ordering of the N(CH3)4 groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.