Abstract

The focus of this work was on the significant changes in the water dynamics of aqueous poly (N-isopropylacrylamide) (PNIPAM) solution during sol-to-gel transition. Through the use of NMR (particularly two-dimensional 2H NMR T1-T2 relaxation) and rheology, we were able to show that below 34° C fast exchange occurs among free water and water molecules adsorbed on the surface of PNIPAM molecules. At 34° C, PNIPAM becomes aggregated; most of the water molecules are trapped in the PNIPAM aggregates, where water molecules with different dynamics are found. Above 34° C, PNIPAM molecules aggregate further to form a gel network; the free bulk water then becomes dominant at this stage. On the basis of these observations, a model where water molecules interact with PNIPAM in different ways during the transition was proposed. We believe that our experimental approach provides new information and fresh perspectives on the sol-to-gel transition of PNIPAM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call