Abstract

The study of the interaction between inert transition metal complexes and nucleic acids has developed from the early work of Dwyer [1], Lippard [2], Norden [3] and Barton [4] to the point that it is now a central theme in bio-inorganic chemistry. While there has been considerable interest in metal complexes that bind nucleic acids, the interaction of metallointercalators with DNA and RNA has received the most attention [5, 6]. Square-planar platinum(II) complexes have demonstrated significant anticancer activity [7], and octahedral ruthenium(II) and rhodium(III) complexes have been used as probes of nucleic acid structure and as a means to study electron transfer reactions mediated by the heteroaromatic bases [5, 6]. While a range of techniques is available to study the nucleic acid binding of metal complexes, NMR spectroscopy (particularly 1H NMR) has proven to be the most useful. NMR spectroscopy can provide a detailed, atom level resolution, picture of the metal complex binding, and if the quality of the data is sufficient, a threedimensional structure of the metal complex bound to the oligonucleotide can be determined. The strategies used to assign the 1H NMR spectrum of an oligonucleotide [8–10], the extension of these methods to study the interaction of metal complexes with DNA and the use of molecular modelling will be presented in this chapter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.