Abstract

Fluorine NMR has been used to examine complexes formed by 2-fluoro-, 3-fluoro-, and 2,5-difluorobenzenesulfonamide and human carbonic anhydrases I and II. The results show that all three inhibitors form complexes with both isozymes that have 2:1 inhibitor/enzyme stoichiometry. The fluorine spectra observed for all inhibitor-isozyme combinations are consistent either with rapid rotation of the aromatic ring of the inhibitor in the complexes or with preferential binding of only one of the two possible conformations of the inhibitors that are isomeric by virtue of rotation about the C1-C4 bond of the fluoro aromatic ring. Because ring rotation is slow in the case of the pentafluorobenzenesulfonamide-CA I complex, selective binding of rotamers is the explanation of these observations presently favored. A computer graphics study shows that formation of 2:1 complexes of CA I is feasible without appreciable distortion of the protein tertiary structure found in the crystalline state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.