Abstract

The binding of the calcium-regulatory protein calmodulin (CaM) to caldesmon (CaD) contributes to the regulation of smooth muscle contraction. Two regions of caldesmon have been identified as putative calmodulin-binding domains. We have earlier reported on the binding of one of these domains to calmodulin (Zhang & Vogel (1994) Biochemistry 33, 1163-1171). Here we have studied the binding of CaM to synthetic peptides of CaD which contain: (1) both the first and second CaM-binding domains; (2) the second CaM-binding domain; and (3) the sequence between the first and second CaM-binding domains. Two-dimensional transferred nuclear Overhauser enhancement proton NMR measurements as well as circular dichroism studies of a 22-residue peptide NKETAGLKVGVSSRINEWLTK, which contains the second CaM-binding domain, show that only the C-terminal half of the peptide becomes alpha-helical upon binding to CaM. Somewhat surprisingly, the shorter 9-residue peptide SRINEWLTK was sufficient to form a 1:1 complex with CaM; this peptide appears to bind as a 3(10)-helix. Proton-carbon-13 correlation NMR titration studies with specifically labeled [methyl-13C]methionine CaM were used to study the participation of the hydrophobic regions in both domains of the dumbbell shaped CaM in peptide binding. Binding of a 54-residue CaD peptide containing both CaM-binding domains affects all the 8 Met residues in the two hydrophobic domains of CaM (only Met 76 in the linker region of CaM is not involved), while binding of the second CaM-binding domain of CaD influences principally Met 51, 71, and Met 124, 144. Simultaneous binding to CaM of two peptides comprising the first and the second CaM-binding domains also caused changes to all Met residues except Met 76. Taken together, these data demonstrate that both CaM-binding domains of CaD can bind simultaneously to the two hydrophobic regions of CaM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.