Abstract

One- and two-dimensional NMR experiments have been undertaken to investigate deoxyinosine:deoxyguanosine (dI:dG) base pairing in a self-complementary dodecadeoxyribonucleotide, d(C1-G2-C3-I4-A5-A6-T7-T8-G9-G10-G11-G12) (designated IG-12), duplex. The NMR data indicate formation of a dI(syn):dG(anti) base pair in a B-DNA helix. This unusual base pairing results in altered NOE patterns between the base protons (H8 and H2) of the I4 residue and the sugar protons of its own and the 5'-flanking C3 residues. The dI(syn):dG(anti) base pair is accommodated in the B-DNA duplex with only a subtle distortion of the local conformation. Identification of the dI:dG base pairing in this study confirms that a hypoxanthine base can form hydrogen-bonded base pairs with all of the four normal bases, C, A, T, and G, in DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call