Abstract

Guanylate cyclase activating protein-5 (GCAP5) in zebrafish photoreceptors promotes the activation of membrane receptor retinal guanylate cyclase (GC-E). Previously, we showed the R22A mutation in GCAP5 (GCAP5R22A) abolishes dimerization of GCAP5 and activates GC-E by more than 3-fold compared to that of wild-type GCAP5 (GCAP5WT). Here, we present ITC, NMR, and functional analysis of GCAP5R22A to understand how R22A causes a decreased dimerization affinity and increased cyclase activation. ITC experiments reveal GCAP5R22A binds a total of 3 Ca2+, including two sites in the nanomolar range followed by a single micromolar site. The two nanomolar sites in GCAP5WT were not detected by ITC, suggesting that R22A may affect the binding of Ca2+ to these sites. The NMR-derived structure of GCAP5R22A is overall similar to that of GCAP5WT (RMSD = 2.3 Å), except for local differences near R22A (Q19, W20, Y21, and K23) and an altered orientation of the C-terminal helix near the N-terminal myristate. GCAP5R22A lacks an intermolecular salt bridge between R22 and D71 that may explain the weakened dimerization. We present a structural model of GCAP5 bound to GC-E in which the R22 side-chain contacts exposed hydrophobic residues in GC-E. Cyclase assays suggest that GC-E binds to GCAP5R22A with ∼25% higher affinity compared to GCAP5WT, consistent with more favorable hydrophobic contact by R22A that may help explain the increased cyclase activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call