Abstract
The flexibility and dynamics of proteins directly influence the processes of protein folding, recognition, and function. NMR spin relaxation methods are used to assess the dynamics and mobility of proteins, for fast ps and ns motions as well as slower μs and ms events. The degree of protein flexibility and disorder as well as the changes in protein flexibility can be assessed by NMR spin relaxation methods at individual residues within the protein. In addition to probing protein dynamics, the changes in the NMR-derived order parameters can be used to estimate the entropic contributions of order–disorder transitions. Furthermore, kinetic processes in the ms time regime may be directly investigated to extract the rates of conformational interconversion, ligand binding, and protein folding processes. We show how a variety of dynamical information can be obtained from NMR relaxation measurements. We present examples that illustrate the use of NMR spin relaxation analysis for investigation of folding and disorder in proteins. © 2001 by Elsevier Science Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.