Abstract

We assign 1H and 13C NMR resonances emanating from acetone, methanol, and cyclohexane adsorbed inside the pores of UiO-66(Zr). These results are informed by density functional theory (DFT) calculations, which probe the role of two competing effects inside of the pore environment: (i) nucleus independent chemical shifts (NICSs) generated by ring currents in conjugated linkers and (ii) small molecule coordination to the metal-oxyhydroxy cluster. These interactions are found to perturb the chemical shift of in-pore adsorbate relative to ex-pore adsorbate (which resides in spaces between the MOF particles). Changes in self-solvation upon adsorption may also perturb the chemical shift. Our results indicate that cyclohexane preferentially adsorbs in the tetrahedral pores of UiO-66(Zr), while acetone and methanol adsorb at the Zr–OH moieties on the metal-oxyhydroxy clusters in a more complex fashion. This method may be used to probe molecular adsorption sites and material void saturation with selected adsorbates...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.