Abstract

NMR detection in the ultralow-field regime (below 10 μT) was used to measure the nuclear spin relaxation rates of liquids imbibed into silica pellets with mean pore diameters in the 10–50 nm range. Heptane, formic acid and acetic acid were studied and relaxation rate data were compared with a conventional field-cycling NMR technique. Detection of 1H-13C spin coupling NMR signals at zero field (∼0.1 nT) allowed spectroscopic identification of molecules inside the porous material and unambiguous measurements of the chemistry-specific relaxation rates in liquid mixtures. In the case of molecules that contain 1H and 13C, spin-singlet state relaxation can provide additional information about the dynamics. Applications and future improvements to the methodology are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.