Abstract
The surface chemistry of aged Li4Ti5O12 and LiFePO4 electrodes that have been cycled in a full cell configuration are examined using nuclear magnetic resonance. The failure mechanism of such cells has been previously identified to be an electrode capacity slippage process caused by the loss of charge carriers: electrons or lithium ions. The electrode-electrolyte interphase is quantitatively analyzed after cycling thanks to a calibration of NMR spectra. LiF is detected at both electrodes: about 1.2μmolmg−1 at the Li4Ti5O12-based electrode and about 0.35μmolmg−1 at the LiFePO4-based electrode, and it is the main component amongst lithiated species. By comparison with gravimetric studies, LiF cannot be the only component of the interphase. From a correlation between the amount of detected LiF and the electrode capacity slippage of the battery, different reaction paths are proposed at each electrode, involving either moisture-driven catalysis or reductive process that consumes a quantity of charge from the electrode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.