Abstract

NMR data on lipid hydroperoxides is scarce. In this study, hydroperoxides were produced from methyl 9- cis,11- trans-octadecadienoate and from methyl 10- trans,12- cis-octadecadienoate by autoxidation in the presence of 20% of α-tocopherol. Ten different hydroperoxides were isolated from the autoxidation mixtures of the two conjugated linoleic acid (CLA) methyl esters by SPE and HPLC. The assignment of the 1H and 13C NMR spectra of these hydroperoxides was accomplished by 2D NMR experiments and by spectral simulations. Substitution of a hydroperoxyl group at the allylic position in CLA methyl esters induced a 53.93 ppm downfield shift on the hydroperoxyl-bearing carbon resonance. The effects on the olefinic α, β, γ, and δ carbon resonances were −3.45, +4.96, −1.22, and +4.42 ppm, respectively. Furthermore, the solvent effects of deuterochloroform, deuteroacetone, and deuterobenzene on the 13C resonances of the hydroperoxides suggest that deuterochloroform is the appropriate solvent for 13C NMR studies on mixtures of lipid hydroperoxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.