Abstract

Orientational restraints such as residual dipolar couplings promise to overcome many of the problems that traditionally limited liquid-state nuclear magnetic resonance spectroscopy. Recently, we developed methods to predict a molecular alignment tensor and thus residual dipolar couplings for a given molecular structure. This provides many new opportunities for the study of the structure and dynamics of proteins, nucleic acids, oligosaccharides and small molecules. This protocol details the use of the software PALES (Prediction of AlignmEnt from Structure) for prediction of an alignment tensor from a known three-dimensional (3D) coordinate file of a solute. The method is applicable to alignment of molecules in many neutral and charged orienting media and takes into account the molecular shape and 3D charge distribution of the molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.