Abstract

Chemical exchange processes of proteins on the order of microseconds (μs) to milliseconds (ms) play critical roles in biological functions. Developments in methyl-transverse relaxation optimized spectroscopy (methyl-TROSY), which observes the slowly relaxing multiple quantum (MQ) coherences, have enabled the studies of biologically important large proteins. However, the analyses of μs to ms chemical exchange processes based on the methyl-TROSY principle are still challenging, because the interpretation of the chemical exchange contributions to the MQ relaxation profiles is complicated, as significant chemical shift differences occur in both (1)H and (13)C nuclei. Here, we report a new methyl-based NMR method for characterizing chemical exchanges, utilizing differential MQ relaxation rates and a heteronuclear double resonance pulse technique. The method enables quantitative evaluations of the chemical exchange processes, in which significant chemical shift differences exist in both the (1)H and (13)C nuclei. The versatility of the method is demonstrated with the application to KirBac1.1, with an apparent molecular mass of 200 kDa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call