Abstract

Duplex formation from the self-complementary 12mer d(CGCGAATTCGCG) (Dickerson dodecamer) in which all phosphodiester linkages were replaced by phosphorothioate or phosphorodithioate linkages was studied using variable-temperature 1H and 31P NMR spectroscopy. Melting temperatures of the dodecamer, measured spectrophotometrically, showed significant decrease upon sulfur substitution (Tm 49 degrees C for the phosphorothioate and 21 degrees C for the phosphorodithioate, compared with 68 degrees C for the unmodified oligomer, in 1 M salt). Hyperchromicity observed upon melting of the dithioate was surprisingly low. NOESY spectra of the monothioate showed a cross-peak pattern characteristic for a right-handed duplex. Imino proton resonances of the duplex, shown by the mono- and the dithioate, were similar to those of the parent compound. In spite of monophasic melting curves, temperature dependence of the imino proton resonances and phosphorus resonances of the phosphorodithioate indicated heterogeneity with respect to base-pairing, compatible with the presence of a hairpin loop. Relaxation times (T1) of the imino protons in the phosphorothioate, determined by the saturation recovery method, were considerably shorter than in the unmodified oligomer. Base-pair lifetimes in the unmodified Dickerson dodecamer, determined by catalyst-dependent changes in relaxation rates of imino protons, were in the range of 2-30 ms at 20 degrees C. Strongly reduced base-pair lifetimes were found in the phosphorothioate analogue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call