Abstract

Since the introduction of polyethylenimine (PEI)/acrylamide-based polymer gel systems in the late 90's, the literature knowledge on the crosslinking mechanisms between the various polymers (PAM, PHPA, and PatBA) and the crosslinker (PEI) was only limited to observations on gelation times and gel strength variations compared to other gel systems. In this paper, classic proton and carbon nuclear magnetic resonance "NMR" experiments and advanced 2D DOSY and NOESY techniques were employed for studying the interactions between the amine groups of PEI and amide or carboxylate groups of partially hydrolysed polyacrylamide (PHPA). Among the many possibilities, we showed that the interaction occurring during thermogelation is mainly due to covalent bonding. The latter results from a transamidification reaction between the polymer amide groups and the primary amines of the crosslinker. The reaction, at high temperatures, was accompanied by some hydrolysis of the polymer amide groups. Consequently, the kinetics of the reaction and hydrolysis were evaluated and fitted using pseudo first-order equations where the hydrolysis kinetics was found to be three times lower than that of the reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.