Abstract

We consider analytical and numerical solution of NMR relaxation under the condition of surface relaxation in an equilateral triangular geometry. We present an analytical expression for the Green’s function in this geometry. We calculate the transverse magnetic relaxation without magnetic gradients present, single-phase, both analytically and numerically. There is a very good match between the analytical and numerical results. We also show that the magnetic signal from an equilateral triangular geometry is qualitatively different from the known solution: plate, cylinder, and sphere, in the case of a nonuniform initial magnetization. Nonuniform magnetization close to the sharp corners makes the magnetic signal very fast multiexponential. This type of initial configuration fits qualitatively with the experimental results by Song (Phys. Rev. Lett. 85, 3878 (2000)), Song et al. (Nature 406, 178 (2000)), Song (Mag. Reson. Imag. 19, 417 (2001)) and Lisitza and Song (Phys. Rev. B 65, 172406 (2002)). It should also be noted that the solution presented here can be used to describe absorption of a chemical substance in an equilateral triangular geometry (for a stationary fluid).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.