Abstract

Metal-capped molecular hosts are unique in supramolecular chemistry, benefitting from the inner cavity's hydrophobic nature and the metal center's electrochemical properties. It is shown here that the paramagnetic properties of the metals in lanthanide-capped cyclodextrins (Ln-α-CDs and Ln-β-CDs) are a convenient NMR indicator for different populations of host-guest complexes in a given solution. The paramagnetic guest exchange saturation transfer (paraGEST) method was used to study the exchange dynamics in systems composed of Ln-α-CDs or Ln-β-CDs with fluorinated guests, revealing multiple co-existing populations of host-guest complexes exclusively in solutions containing Ln-β-CDs. The enhanced spectral resolution of paraGEST, achieved by a strong pseudo contact shift induction, revealed that different molecular guests can adopt multiple orientations within Ln-β-CDs' cavities and, in contrast, only a single orientation inside Ln-α-CDs. Thus, paraGEST, which can significantly improve NMR detectability and spectral resolution of host-guest systems that experience fast exchange dynamics, is a convenient tool for studying supramolecular systems of metal-capped molecular hosts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call