Abstract

The chemical shift of elemental xenon is extremely sensitive to the environment. In aprotic solvents, the presence of xenon has little effect on the solvent structure, and preferential solvation is not observed in any mixed solvent system. Consequently, xenon shifts can reveal the presence of short range order in certain liquids. Chemical shift data are presented for several model systems, including mixtures of different alkanes, alkanes with benzene, alkanes with acetone, and carbon tetrachloride with dimethylformamide (DMF). In certain cases, the xenon shift is strongly non-linear with composition. This effect arises from a specific interaction between the two solvents in the CCl4-DMF system, while it reflects short range liquid order in the acetone-alkane systems. This effect is also apparent in the deviation of the densities of the acetone-alkane mixtures from ideality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.