Abstract
Carbohydrate structures containing alkyl groups as aglycones are useful for investigating enzyme activity and glycan-protein interactions. Moreover, linker-containing oligosaccharides with a spacer group are commonly used to print glycan microarrays or to prepare protein-conjugates as vaccine candidates. The structural accuracy of these synthesized glycans are essential for interpretation of results from biological experiments in which the compounds have been used and NMR spectroscopy can unravel and confirm their structures. An approach for efficient 1H and 13C NMR chemical shift assignments employed a parallel NOAH-10 measurement followed by NMR spin-simulation to refine the 1H NMR chemical shifts, as exemplified for a disaccharide with an azidoethyl group as an aglycone, the NMR chemical shifts of which have been used to enhance the quality of CASPER (http://www.casper.organ.su.se/casper/). The CASPER program has been further developed to aid characterization of linker-containing oligo- and polysaccharides, either by chemical shift prediction for comparison to experimental NMR data or as structural investigation of synthesized glycans based on acquired unassigned NMR data. The ability of CASPER to elucidate structures of linker-containing oligosaccharides is demonstrated and comparisons to assigned or unassigned NMR data show the utility of CASPER in supporting a proposed oligosaccharide structure. Prediction of NMR chemical shifts of an oligosaccharide, corresponding to the repeating unit of an O-antigen polysaccharide, having a linker as an aglycone and a non-natural substituent derivative thereof are presented to exemplify the diversity of structures handled. Furthermore, NMR chemical shift predictions of synthesized polysaccharides, corresponding to bacterial polysaccharides, containing a linker are described showing that in addition to oligosaccharide structures also polysaccharide structures having an aglycone spacer group can be analyzed by CASPER.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.