Abstract

Independent down-regulation of genes encoding p-coumarate 3-hydroxylase (C3H) and hydroxycinnamoyl CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) has been previously shown to reduce the recalcitrance of alfalfa and thereby improve the release of fermentable sugars during enzymatic hydrolysis. In this study, ball-milled lignins were isolated from wild-type control, C3H, and HCT gene down-regulated alfalfa plants. One- and two-dimensional nuclear magnetic resonance (NMR) techniques were utilized to determine structural changes in the ball-milled alfalfa lignins resulting from this genetic engineering. After C3H and HCT gene down-regulation, significant structural changes had occurred to the alfalfa ball-milled lignins compared to the wild-type control. A substantial increase in p-hydroxyphenyl units was observed in the transgenic alfalfa ball-milled lignins as well as a concomitant decrease in guaiacyl and syringyl units. Two-dimensional 13C–1H heteronuclear single quantum coherence correlation NMR, one-dimensional distortionless enhancement by polarization transfer-135, and 13C NMR measurement showed a noteworthy decrease in methoxyl group and β-O-4 linkage contents in these transgenic alfalfa lignins. 13C NMR analysis estimated that C3H gene down-regulation reduced the methoxyl content by ~55–58% in the ball-milled lignin, while HCT down-regulation decreased methoxyl content by ~73%. The gene down-regulated C3H and HCT transgenic alfalfa lignin was largely a p-hydroxyphenyl (H) rich type lignin. Compared to the wild-type plant, the C3H and HCT transgenic lines had an increase in relative abundance of phenylcoumaran and resinol in the ball-milled lignins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call