Abstract

Helicobacter pylori, the human pathogenic gram-negative microaerophilic bacterium, causes chronic gastric infection in more than half of the human population regardless of race. The infection of microbe is not yet controllable to pose a substantial public health impact and a growing social burden. The management of H. pylori infection primarily necessitates accurate and timely diagnosis at case level, on-demand supervision of pathologic progression, and reliable evaluation of the impact of pharmacologic interventions on the patients' population. The characterization of H. pylori infection on gerbils model was performed by metabolic profiling, employing 1H NMR spectroscopy compounding multivariate pattern recognition strategies. In the same manner, urine samples were individually collected from 10 gerbils infected with H. pylori GS13, and from 10 uninfected control animals equally accessible to feed and water. The resultant metabolic profiles indicate that H. pylori infection disturbs carbohydrate metabolism to elevate the levels of alpha- and beta-glucose, and cis-aconitate (a TCA cycle intermediate). In addition to the energy metabolism alteration, the colonization of H. pylori in gerbil stomach generates a remarkable deviation of amino acid metabolism as indicated by depletion of taurine and arginine, and elevation of proline and glutamine in the animal urine. Moreover, the H. pylori infection modifies the gut microbiota as highlighted by a range of microbial-related metabolites such as indoxyl sulfate and hippurate. These findings demonstrate that the (1)H NMR-based urine metabolic profiling is a promising technique capable of providing an accurate, noninvasive, and rapid diagnosis of H. pylori infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.