Abstract

Acetylation of histone tails as well as non-histone proteins was found to be a major component of the 'chromatin code' that regulates transcription through the recruitment of transcription factors, co-regulators and DNA-binding proteins. Acetylation can have several effects modifying protein-protein interactions, protein activity, localization and stability. Using NMR spectroscopy, we provide a simple way to detect acetyl moieties at the epsilon-amino function of lysine residues based on peptides derived from Histone H4 and TDG amino-terminal domains. Significant changes of acetyl-lysine resonances as compared to non-acetylated residues allow a direct identification of specific acetylated lysine. We also show that, in unfolded peptides, acetylation of lysine side chains leads to characteristic NMR signals that vary only weakly depending on the primary sequence or the total number of acetylated sites, indicating that the acetamide group does not establish any interactions with other residues. Furthermore, resonance changes upon acetylation are restricted to residues nearby the acetylation site, indicating that acetylation does not modify the overall peptide conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call