Abstract

A novel approach for the structural analysis of heteroleptic triple-decker (porphyrinato)(phthalocyaninato) lanthanides(III) in solutions is developed. The developed approach consists in molecular mechanics (MM+) optimization of the geometry of the complex taking into account the lanthanide-induced shift (LIS) datasets. LISs of the resonance peaks in (1)H NMR spectra of a series of symmetric complexes [An(4)P]Ln[(15C5)(4)Pc]Ln[An(4)P], where An(4)P(2-) is 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrinato-dianion, [(15C5)(4)Pc](2-) is 2,3,9,10,16,17,24,25-tetrakis(15-crown-5)phthalocyaninato-dianion and Ln = La, Ce, Pr, Nd, Sm, Eu, are analyzed. Analysis of LISs showed two sets of protons in the molecule with opposite signs of shift. Two-nuclei analysis of LISs testifies isostructurality of the whole series of investigated complexes in solution despite contraction of the lanthanide ions. Model-free separation of contact and dipolar contributions of LISs was performed with one-nucleus technique and did not show changes in contact and dipolar terms within the investigated series. MM+ optimization of the molecular structure allowed the interpretation of features of LIS for each particular group of protons. Parameterization of MM + -optimized model of molecule with values of structure-dependent dipolar contributions of LIS allows the development of the precise structural model of the triple-decker complex in solution. This approach allows the determination of the geometry and structure of the sandwich macrocyclic tetrapyrrolic complexes together with conformational analysis of flexible peripheral substituents in solutions. The developed method can be applied with minor modifications for the determination of structural parameters of other types of lanthanides(III) complexes with tetrapyrrolic ligands and also supramolecular systems based on them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.