Abstract

In exploring the capability of nuclear magnetic resonance (NMR) spectroscopy for pomegranate juice analysis, the eight aromatic singlet resonances of α- and β-punicalagin were clearly identified in the (1)H NMR spectra of juice samples. The four downfield resonances were found to be sensitive to small pH changes around pH 3.50 where the NMR spectra of the juice samples were recorded. To understand this unusual behavior, the (1)H and (13)C resonance assignments of the punicalagin anomers were determined in aqueous solution and pH titrations with UV and (1)H NMR detection carried out to characterize the acid-base properties of punicalagin over the pH range 2-8. Simultaneous fitting of all of the pH-sensitive (1)H NMR signals produced similar but significantly different pKa values for the first two deprotonation equilibria of the gallagic acid moiety of the punicalagin α- (pKa1 = 4.57 ± 0.02, pKa2 = 5.63 ± 0.03) and β- (pKa1 = 4.36 ± 0.01, pKa2 = 5.47 ± 0.02) anomers. Equivalent pKa values, (α : 6.64 ± 0.01, β : 6.63± 0.01) were measured for the third deprotonation step involving the ellagic acid group, in good agreement with a prior literature report. The punicalagin anomer equilibrium readjusts in parallel with the proton dissociation steps as the pH is raised such that β-punicalagin becomes the most abundant anomer at neutral pH. The unusual upfield shifts observed for the glucose H3 and H5 resonances with increasing pH along with the shift in the α/β anomer equilibrium are likely the consequence of a conformational rearrangement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.