Abstract

We investigated the potential of solid-state NMR using magic angle spinning (MAS) with and without dynamic nuclear polarization (DNP) and electron paramagnetic resonance (EPR) for the characterization of functionalized nanodiamonds (NDs). We showed that conventional 1H, 31P, and 13C solid-state NMR spectra allow differentiating in a straightforward way NDs from commercial sources and custom-made NDs bearing aromatic or aliphatic phosphonate moieties at their surface. Besides, the short nuclear relaxation times prove the close proximity between the endogenous paramagnetic centers of NDs and the grafted organic moieties. EPR spectra confirmed the presence of these paramagnetic centers in functionalized NDs, which are centered on dangling bonds as well as a few N0 defects, corresponding to the substitution of carbon atoms by nitrogen ones. Hyperfine sublevel correlation spectroscopy indicates that the N0 paramagnetic centers are mostly located in the disordered shell of NDs. Preliminary DNP-enhanced NMR expe...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.