Abstract

Solid-state NMR analysis on wurtzite 2-nm hexadecylamine-capped CdSe nanocrystals (CdSe-HDA) provides evidence of discrete nanoparticle reconstruction within the Se sublattice of the nanomaterial. The cadmium and selenium atoms are probed with (1)H-(113)Cd and (1)H-(77)Se cross-polarization magic angle spinning (MAS) experiments, which demonstrate five ordered selenium sites in the nanoparticle that can be assigned to contributions arising from different surface sites and a selenium site one layer down from the surface. Intriguingly, in these materials both HDA and thiophenol are observed to selectively bind to specific sites on the nanoparticle surface. 2D heteronuclear chemical shift correlation (HETCOR) experiments provide evidence for thiophenol selectively binding at surface vacancies. Analysis of the NMR provides a model of a 2-nm CdSe-HDA molecular surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.