Abstract
The interaction of the diastereomeric complexes Lambda-[Ru(bpy)2(m-GHK)]Cl2 and Delta-[Ru(bpy)2(m-GHK)]Cl2 (bpy is 2,2'-bipyridine, GHK is glycine-L-histidine-L-lysine) with the deoxynucleotide duplex d(5'-CGCGATCGCG)2 was studied by means of 1H NMR spectroscopy. At a Delta-isomer to DNA ratio of 1:1, significant shifts for the metal complex are observed, whereas there is negligible effect on the oligonucleotide protons and only one intermolecular nuclear Overhauser effect (NOE) is present at the 2D nuclear Overhauser enhancement spectroscopy spectrum. The 1Eta NMR spectrum at ratio 2:1 is characterized by a slight shift for the Delta-isomer's bpy aromatic protons as well as significant shifts for the decanucleotide G4 H1' and Eta2'', A5 H2, G10 H1', T6 NH and G2 NH protons. Furthermore, at ratio 2:1, 11 intermolecular NOEs are observed. The majority of the NOEs involve the sugar Eta2' and Eta2'' protons sited in the major groove of the decanucleotide. Increasing the Delta-isomer to d(CGCGATCGCG)2 ratio to 5:1 results in noteworthy spectral changes. The Delta-isomer's proton shifts are reduced, whereas significant shifts are observed for the decanucleotide protons, especially the sugar protons, as well as for the exchangeable protons. Interaction is characterized by the presence of only one intermolecular NOE. Furthermore, there is significant broadening of the imino proton signals as the ratio of the Delta-isomer to DNuAlpha increases, which is attributed to the opening of the two strands of the duplex. The Lambda-isomer, on the other hand, approaches the minor groove of the oligonucleotide and interacts only weakly, possibly by electrostatic interactions. Photocleavage studies were also conducted with the plasmid pUC19 and a 158-bp restriction fragment, showing that both diastereomers cleave DNA with similar efficiency, attacking mainly the guanines of the sequence probably by generating active oxygen species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.