Abstract

The DNA binding domain of the yeast transcriptional activator CYP1(HAP1) contains a zinc-cluster structure. The structures of the DNA binding domain-DNA complexes of two other zinc-cluster proteins (GAL4 and PPR1) have been studied by X-ray crystallography. Their binding domains present, besides the zinc cluster, a short linker peptide and a dimerization element. They recognize, as homodimers, two rotationally symmetric CGG trinucleotides, the linker peptide and the dimerization element playing a crucial role in binding specificity. Surprisingly, CYP1 recognizes degenerate forms of a direct repeat, CGGnnnTAnCGGnnnTA, and the role of its linker is under discussion. To better understand the binding specificity of CYP1, we have studied, by NMR, the interaction between the CYP1(55-126) peptide and two DNA fragments derived from the CYC1 upstream activation sequence 1B. Our data indicate that CYP1(55-126) interacts with a CGG and with a thymine 5 bp downstream. The CGG trinucleotide is recognized by the zinc cluster in the major groove, as for GAL4 and PPR1, and the thymine is bound in the minor groove by the N-terminal region, which possesses a basic stretch of arginyl and lysyl residues. This suggests that the CYP1(55-126) N-terminal region could play a role in the affinity and/or specificity of the interaction with its DNA targets, in contrast to GAL4 and PPR1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.