Abstract
Over the past decade molecular mechanics and molecular dynamics studies have demonstrated considerable flexibility for carbohydrates. In order to interpret the corresponding NMR parameters, which correspond to a time-averaged or 'virtual' conformer, it is necessary to simulate the experimental data using the averaged geometrical representation obtained with molecular modelling methods. This structural information can be transformed into theoretical NMR data using empirical Karplus-type equations for the scalar coupling constants and the appropriate formalism for the relaxation parameters. In the case of relaxation data, the 'model-free' spectral densities have been widely used in order to account for the internal motions in sugars. Several studies have been conducted with truncated model-free spectral densities based on the assumption that internal motion is very fast with respect to overall tumbling. In this report we present experimental and theoretical evidence that suggests that this approach is not justified. Indeed, recent results show that even in the case of moderate-sized carbohydrates internal motions are occurring on the same timescale as molecular reorientation. Simulations of relaxation parameters (NOESY volumes, proton cross-relaxation rates, carbon T1 and nOe values) in the dispersion range (0.1 < tau(c) < 5 ns) show that rates of internal motion can be fairly precisely defined with respect to overall tumbling. Experimental data for a variety of oligosaccharides clearly indicate similar timescales for internal and overall motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.