Abstract

N-Methyl- dl-aspartate, l-glutamate, kainate and dl-homocysteate were found to increase the initial rate and the maximal uptake of 45Ca into the non-inulin space of rat brain cortex slices incubated in vitro. The N-methylaspartate-stimulated calcium uptake was blocked by cadmium and cobalt ions, but not by the organic calcium channel blocker nifedipine or by tetrodotoxin, both of which stimulated the N-methylaspartate-independent calcium influx, γ-Aminobutyrate increased the spontaneous calcium influx, and also reduced that stimulated by N-methylaspartate to the same level, as found with γ-aminobutyrate alone. Adenosine (1–100 μM), ethanol (0.1 M), pentobarbital (10–100 μM) and morphine (0.2 mM), were unable to inhibit the N-methylaspartate-activated calcium influx. Ethanol (0.1 M), had no effect on the glutamate- or kainate-activated calcium influx. These findings suggest that the excitatory amino acids, because of their neuronal depolarizing action in brain cortex, lead to the opening of voltage-sensitive calcium channels, which may be blocked by cadmium, but not by the organic calcium channel antagonist, nifedipine. The activation of calcium channels by the excitatory amino acid N-methylaspartate, was entirely unaffected by the depressants ethanol, pentobarbital or morphine, or by the endogenous inhibitory substance, adenosine, thus suggesting that their inhibitory or depressant effects occur through interference with a neuronal mechanism unrelated to the one studied here. γ-Aminobutyrate, on the other hand, considerably inhibited N-methylaspartate-induced calcium uptake, an effect interpreted as due to a γ-aminobutyrate-induced increase in chloride conductance, that “clamps” the membrane potential and does not allow further depolarization by N-methylaspartate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.