Abstract
Actual wastewater generated from N-methylpyrrolidone (NMP) manufacture was used as electron donor for tertiary denitrification. The organic components of NMP wastewater were mainly NMP and monomethylamine (CH3NH2), and their biodegradation released ammonium that was nitrified to nitrate that also had to be denitrified. Bench-scale experiments documented that alternating denitrification and nitrification realized effective total‑nitrogen removal. Ammonium released from NMP was nitrified in the aerobic reactor and then denitrified when actual NMP wastewater was used as the electron donor for endogenous and exogenous nitrate. Whereas TN and NMP removals occurred in the denitrification step, dissolved organic carbon (DOC) and CH3NH2 removals occurred in the denitrification and nitrification stages. The genera Thauera and Paracoccus were important for NMP biodegradation and denitrification in the denitrification reactor; in the nitrification stage, Amaricoccus and Sphingobium played key roles for biodegrading intermediates of NMP, while Nitrospira was responsible for NH4+ oxidation to NO3−. Pilot-scale demonstration was achieved in a two-stage vertical baffled bioreactor (VBBR) in which total‑nitrogen removal was realized sequential anoxic-oxic treatment without biomass recycle. Although the bench-scale reactors and the VBBR had different configurations, both effectively removed total nitrogen through the same mechanisms. Thus, an N-containing organic compound in an industrial wastewater could be used to drive total-N removal in a tertiary-treatment scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.