Abstract

Accumulation of amyloid-β (Aβ) is a hallmark of Alzheimer’s disease, a neurodegenerative disorder in which synapse loss and dysfunction are early features. Acute exposure of hippocampal slices to Aβ leads to changes in synaptic plasticity, specifically reduced long-term potentiation (LTP) and enhanced long-term depression (LTD), with no change in basal synaptic transmission. We also report here that D-AP5, a non-selective NMDA receptor antagonist, completely prevented Aβ-mediated inhibition of LTP in area CA1 of the hippocampus. Ro25-6981, an antagonist selective for GluN2B (NR2B) NMDA receptors, only partially prevented this Aβ action, suggesting that GluN2A and GluN2B receptors may both contribute to Aβ suppression of LTP. The effect of Aβ on LTP was also examined in hippocampal slices from BAX −/− mice and wild-type littermates. Aβ failed to block LTP in hippocampal slices from BAX −/− mice, indicating that BAX is essential for Aβ inhibition of LTP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call