Abstract

Protein inhibitor of activated STAT1 (PIAS1) was shown to play an important role in inflammation and innate immune response, but how PIAS1 is regulated is not known. We have recently demonstrated that PIAS1 enhances spatial learning and memory performance in rats. In this study, we examined the signaling pathway and neural mechanism that regulate PIAS1 expression in the brain by using pharmacological and molecular approaches. Our results revealed that pias1 gene expression is rapidly induced upon NMDA receptor activation in rat hippocampus, but this effect is blocked by transfection of sub-threshold concentrations of ERK1 siRNA/ERK2 siRNA or CREB siRNA. Pias1 gene expression is similarly induced by overexpression of the ERK1/ERK2 plasmids in rat hippocampus, and this effect is also blocked by sub-threshold concentration of CREB siRNA transfection. On the other hand, transfection of ERK1 siRNA/ERK2 siRNA or CREB siRNA at a higher concentration is sufficient to down-regulate PIAS1 expression. Inhibition of PI-3 kinase signaling and CaMKII signaling, which both result in CREB inactivation, similarly decreases PIAS1 expression. But NMDA and MK-801 do not affect the expression of IL-6 and TNFα. NMDA also did not affect the expression of PIAS2, PIAS3 and PIAS4. Further, pias1 mRNA has a similar degradation rate to that of the zif268 gene. These results together suggest that pias1 may function as an immediate early gene in an activity-dependent manner and PIAS1 expression is regulated by the NMDA-MAPK/ERK-CREB signaling pathway implicated in neuronal plasticity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.