Abstract

Recent evidence has implicated activation of the N-methyl- d-aspartate (NMDA) class of glutamate receptor in the initiation of hippocampal long-term potentiation (LTP), an electrophysiological model of information storage in the brain. A separate line of evidence has suggested that activation of protein kinase C (PKC) and the consequent phosphorylation of it substrates is necessary for the maintenance of the LTP response. To determine if PKC activation is a consequence of NMDA receptor activation during LTP, we applied the NMDA receptor antagonist drug, dl-aminophosphonovalerate (APV) both immediately prior to and following high frequency stimulation, resulting in successful and unsuccessful blockade of LTP initiation, respectively. We then measured the phosphorylation of a PKC substrate (protein F1) in hippocampal tissue dissected from these animals. Only successful blockade of LTP initiation by prior application of APV was seen to block the LTP-associated increase in protein F1 phosphorylation measured in vitro ( P < 0.0001 by ANOVA). This suggests that NMDA receptor-mediated initiation triggers maintenance processes that are, at least in part, mediated by protein F1 phosphorylation. These data provide the first evidence linking two mechanisms associated with LTP, NMDA receptor activation and PKC substrate phosphorylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.