Abstract

During visual system development, programmed cell death occurs in order to facilitate the establishment of correct connections and synapses. During this period, glutamate plays a very important role as an excitatory neurotransmitter. With a view to evaluating if NMDA glutamate receptors participate in the regulation of apoptosis which occurs during the development of the rat retina, we subcutaneously injected the NMDA receptor antagonist MK-801 into rats at different stages of early postnatal development (P2 to P9). Ensuing cell death in the retina and superior colliculus was analyzed by using the Feulgen method. MK-801 administration had no effect on the survival of photoreceptor cells. In contrast, the presence of this antagonist induced a significant increase in the number of apoptotic cells in the neuroblastic layer (P7 and P8) and ganglion cell layer (P6-P8), as well as in the superior colliculus which receives afferent contacts from retinal ganglion cells during P7-P9. We conclude that during development, specific types of cells in the mammalian retina are critically dependent for their survival on glutamate stimulation through NMDA receptors. These findings thus throw fresh light on the mechanisms of development of the rat visual system by identifying NMDA glutamate receptors as participants in the regulation of apoptotic processes which occur during the initial stages of development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.