Abstract

The One-vs-One strategy is among the most used techniques to deal with multi-class problems in Machine Learning. This way, any binary classifier can be used to address the original problem, since one classifier is learned for each possible pair of classes. As in every ensemble method, classifier combination becomes a vital step in the classification process. Even though many combination models have been developed in the literature, none of them have dealt with the possibility of reducing the number of generated classifiers after the training phase, i.e., ensemble pruning, since every classifier is supposed to be necessary.On this account, our objective in this paper is two-fold: (1) We propose a transformation of the aggregation step, which lead us to a new combination strategy where instances are classified on the basis of the similarities among score-matrices. (2) This fact allows us to introduce the possibility of reducing the number of binary classifiers without affecting the final accuracy. We will show that around 50% of classifiers can be removed (depending on the base learner and the specific problem) and that the confidence degrees obtained by these base classifiers have a strong influence on the improvement in the final accuracy.A thorough experimental study is carried out in order to show the behavior of the proposed approach in comparison with the state-of-the-art combination models in the One-vs-One strategy. Different classifiers from various Machine Learning paradigms are considered as base classifiers and the results obtained are contrasted with the proper statistical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.