Abstract

BackgroundNm23 gene was isolated as a metastatic suppressor gene. The antimetastatic effect of Nm23 has been an enigma for more than 10 years. Little is known about its molecular mechanisms. In this study we overexpressed Nm23-H1 in H7721 cells and observed reduction of cell adhesion, migration and extension of actin stress fibers in cells stimulated by fibronectin (Fn).MethodspcDNA3/Nm23-H1 was introduced into H7721 cells, and expression of Nm23-H1 was monitored by RT-PCR and western blot. Cell adhesion, actin extension and wound-induced migration assays were done on dishes coated with fibronectin. Phosphorylation of focal adhesion kinase (FAK) and total amount of integrin alpha5 and beta1 in Nm23-H1 transfected cells and control cells were measured by western blot. Flow cytometry was used to detect expression of surface alpha5 and beta1 integrin. N-glycosylation inhibitor tunicamycin was used to deglycosylate the integrin beta1 subunit.ResultsOverexpression of nm23-H1 in H7721 cells reduced cell adhesion, migration and extension of actin stress fibers on dishes coated with Fn. Phosphorylation of FAK in Nm23-H1 transfected cells was also attenuated. Integrin alpha5 and beta1 gene messages were unaltered in nm23-H1 overexpressed cells as detected by RT-PCR. However, while cell surface integrin alpha5 was unchanged, surface expression of beta1 integrin was downregulated. Western blot also showed that the total amounts of integrin alpha5 and beta1 were unaltered, but the level of mature integrin beta1 isoform was decreased significantly. Furthermore, partially glycosylated precursor beta1 was increased, which indicated that the impaired glycosylation of integrin beta1 precursor might contribute to the loss of cell surface integrin beta1 in nm23-H1 overexpressed cells.ConclusionThese results suggest that by modulating glycosylation of integrin beta1, nm23-H1 down-regulates integrin beta1 subunit on cell surface and mediates intracellular signaling and subsequent suppression of the invasive process, including cell adhesion and migration.

Highlights

  • Nonmetastatic protein 23 (Nm23) is a nucleoside diphosphate kinase that is conserved from bacteria to mammals [1]

  • We have studied cell adhesion, spreading and migration, as well as phosphorylation of focal adhesion kinase (FAK) to fibronectin matrix in H7721 cell line transfected with Nm23-H1 complementary DNAs (cDNAs)

  • We found that mRNA levels of α5 and β1 subunit were not changed in Nm23/H7721 cells (Fig. 4)

Read more

Summary

Introduction

Nonmetastatic protein 23 (Nm23) is a nucleoside diphosphate kinase that is conserved from bacteria to mammals [1]. Nm23 gene was isolated as a putative metastatic suppressor gene. The nm23-H1 was firstly discovered in the members of this gene family [3], and demonstrated to have anti-metastatic properties in various models of human and animal cancer [4]. The gene is located on chromosome 17 q 21, which encodes an 18.5 kDa protein containing 166 amino acid residues with nucleoside diphosphate kinase, histidine kinase and serine autophosphorylation activities [5]. It is known that in many tumors high levels of nm23-H1 correlate with low degree of invasiveness. The mechanism by which Nm23-H1 suppresses tumor metastasis is still poorly understood. Nm23 gene was isolated as a metastatic suppressor gene. Little is known about its molecular mechanisms. In this study we overexpressed Nm23-H1 in H7721 cells and observed reduction of cell adhesion, migration and extension of actin stress fibers in cells stimulated by fibronectin (Fn)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.