Abstract

Lung cancer is the leading cause of cancer death in both men and women worldwide. Tumor metastasis is an essential aspect of lung cancer progression and patient death. The nm23-H1 gene has been extensively investigated as a metastasis suppressor gene. Our previous studies have revealed: that a significant relationship exists between the low-level expression nm23-H1 in primary non-small cell lung cancer (NSCLC) with increased metastasis and a poor prognosis; that L9981-nm23-H1 cells (a nm23-H1 transfactant cell) exhibited lower cell proliferation rates, more G0/G1 phase growth, and an increase in apoptosis with a dramatic decrease in the tumor cells' ability to invade than L9981 cells did; and that L9981- nm23-H1 cells also demonstrated a significantly reduced lymph node and distant metastatic capacity in vivo than L9981 cells did in nude mice. In this study, we construct a plasmid containing the nm23-H1 gene, which was driven by the human telomerase reverse transcriptase (hTERT) promoter. We evaluated the anti-invasion and anti-metastatic effects of pGL3-hTP-nm23 on L9981, a human large cell lung cancer cell line with nm23-H1 negative expression, by transwell assay in vitro and bioluminescence in nude mice models. The toxicity of pGL3-hTP-nm23 and its effects on tumor growth were evaluated in nude mice models after gene therapy. The cell cycles, apoptosis, and proliferation of the nm23-H1 transfactant were also detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT assay) and flow cytometry (FCM). The results showed that the hTERT-promoter dramatically drives nm23-H1 gene expression, and induces inhibition of cell growth and migration in L9981-luc cells and MRC-5 cells in vitro. nm23-H1 also significantly inhibited the tumorigenesis and distant metastasis of L9981-luc cell in vivo. Moreover, no obvious side effect was detected in normal mouse tissues after intratumoral injection of the vector. The treatment of the nm23-H1 gene driven by hTERT promoter appears to be a promising approach for the gene therapy of nm23-H1 low-expressed tumors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.