Abstract

We investigate the statistical equilibrium of Co in the atmospheres of cool stars, and the influence of NLTE and HFS (hyperfine splitting) on the formation of Co lines and abundances. Significant departures from LTE level populations are found for Co I, also number densities of excited states in Co II differ from LTE at low metallicity. The NLTE abundance of Co in solar photosphere is 4.95 +/- 0.04 dex, which is in agreement with that in C I meteorites within the combined uncertainties. The spectral lines of Co I were calculated using the results of recent measurements of hyperfine interaction constants by UV Fourier transform spectrometry. For Co II, the first laboratory measurements of hyperfine structure splitting A and B factors were performed. A differential abundance analysis of Co is carried out for 18 stars in the metallicity range -3.12 < [Fe/H] < 0. The abundances are derived by method of spectrum synthesis. At low [Fe/H], NLTE abundance corrections for Co I lines are as large as +0.6 >... +0.8 dex. Thus, LTE abundances of Co in metal-poor stars are severely underestimated. The stellar NLTE abundances determined from the single UV line of Co II are lower by ~0.5-0.6 dex. The discrepancy might be attributed to possible blends that have not been accounted for in the solar Co II line and its erroneous oscillator strength. The increasing [Co/Fe] trend in metal-poor stars, as calculated from the Co I lines under NLTE, can be explained if Co is overproduced relative to Fe in massive stars. The models of galactic chemical evolution are wholly inadequate to describe this trend suggesting that the problem is in SN yields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.