Abstract

Background. Obesity in children is highly prevalent in Mexican population. Adipose tissue has been related to specific pro- and anti-inflammatory cytokine and inflammasome gene and protein expression patterns. Actually, there is no existing biosensor for detecting gene expression patterns in children with obesity. The quartz crystal microbalance with dissipation monitoring (QCM-D) has been used as a transducer for DNA biosensor design. Results. In this study, the gene expression pattern of IL-1β, NLRP3, and CASPASE-1 in children with obesity was successfully determined by means of QCM-D. Gene expression patterns were validated with those obtained by quantitative polymerase chain reaction (qPCR), a validated molecular biology technique for gene expression quantification. QCM-D analysis of the detected mass corresponding results for each of the genes showed a major detected mass for IL-1β, followed by similar NLRP3 and constitutive gene 18S deposited mass and a smaller deposited mass for CASPASE-1. Surprisingly, when comparing mRNA gene expression results for NLRP3, IL-1β, and CASPASE-1 obtained with qPCR and QCM-D, similar patterns were found, revealing greatest expression of IL-1β, followed by NLRP3, with CASPASE-1 being the molecule of least expression in the group of children with obesity. AFM images illustrate the step-by-step changes that took place on the quartz surface. Conclusions. QCM-D proved successfully for determining the gene transcripts and expression of NLRP3, IL-1β, and CASPASE-1 in children with obesity, with similar results validated by qPCR. “QCM-D decreases detection costs compared with a validated molecular biology technique.” The QCM-D biosensor developed by our group was successful for gene expression determination; in the future, it can be used for molecular diagnosis.

Highlights

  • Quartz crystal microbalance with dissipation monitoring (QCM-D) is a mass-sensitive transducer that provides the opportunity to analyze the interactions between molecules at solid/liquid interfaces

  • quartz crystal microbalance with dissipation monitoring (QCM-D) can be used for determining the gene expression of transcripts in children with obesity, with similar results as the ones obtained with quantitative polymerase chain reaction (qPCR), a validated method used in molecular biology to determine genic expression quantification

  • The QCM-D biosensor developed by our group was successful in gene expression determination, as proof of concept, using qPCR as validation method

Read more

Summary

Introduction

Quartz crystal microbalance with dissipation monitoring (QCM-D) is a mass-sensitive transducer that provides the opportunity to analyze the interactions between molecules at solid/liquid interfaces. Affinity-based biosensors may represent an alternative tool able to quantify the expression of a set of selected genes by determining the amount of corresponding messenger RNA (mRNA) in complex mixtures The advantages of this approach include avoiding the labelling, retrotranscription, and amplification steps while maintaining high sensitivity and specificity [2,3,4]. When comparing mRNA gene expression results for NLRP3, IL-1β, and CASPASE-1 obtained with qPCR and QCM-D, similar patterns were found, revealing greatest expression of IL-1β, followed by NLRP3, with CASPASE-1 being the molecule of least expression in the group of children with obesity. QCM-D proved successfully for determining the gene transcripts and expression of NLRP3, IL-1β, and CASPASE-1 in children with obesity, with similar results validated by qPCR. “QCM-D decreases detection costs compared with a validated molecular biology technique.” The QCM-D biosensor developed by our group was successful for gene expression determination; in the future, it can be used for molecular diagnosis

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call