Abstract

The aim of this study was to investigate the role of nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 2 (NLRP2) in kidney ischemia/reperfusion injury. A mouse model of acute kidney ischemia/reperfusion injury was established to conduct in vivo experiments. Oxygen–glucose deprivation (OGD) and cobalt chloride treatment of the HK-2 and glomerular endothelial cell (GENC) kidney cell lines were performed for the in vitro study. Reverse transcription–quantitative polymerase chain reaction, western blotting, and immunohistochemical staining were used to analyze NLRP2 expression levels. Knockdown of NLRP2 in cells was also performed, and cell apoptosis was detected using flow cytometry. NLRP2 was expressed in normal kidney tissues; however, its expression was significantly increased in the acute kidney injury model and in OGD-treated cells. Conversely, knockdown of NLRP2 reduced apoptosis of cells. These results suggested that NLRP2 was involved in kidney damage and may be an important target for treatment of acute kidney injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.