Abstract

SummaryThe recognition of fungi by intracellular NOD-like receptors (NLRs) induces inflammasome assembly and activation. Although the NLRC4 inflammasome has been extensively studied in bacterial infections, its role during fungal infections is unclear. Paracoccidioidomycosis (PCM) is a pathogenic fungal disease caused by Paracoccidioides brasiliensis. Here, we show that NLRC4 confers susceptibility to experimental PCM by regulating NLRP3-dependent cytokine production and thus protective effector mechanisms. Early after infection, NLRC4 suppresses prostaglandin E2 production, and consequently reduces interleukin (IL)-1β release by macrophages and dendritic cells in the lungs. IL-1β is required to control fungal replication via induction of the nitric oxide synthase 2 (NOS2) pathway. At a later stage of the disease, NLRC4 impacts IL-18 release, dampening robust CD8+IFN-γ+ T cell responses and enhancing mortality of mice. These findings demonstrate that NLRC4 promotes disease by regulating the production of inflammatory cytokines and cellular responses that depend on the NLRP3 inflammasome activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call