Abstract

In today's fast-growing online information age we have an abundance of text, especially on the web. New information is constantly being generated. Often due to time constraints we are not able to consume all the data available. It is therefore essential to be able to summarize the text so that it becomes easier to ingest, while maintaining the essence and understandability of the information. The summarizer basically uses the combinations of term frequency and sentence position methods with language specific lexicons in order to identify the most important sentence for extractive summary. We aim to design an algorithm that can summarize a document by their performance both objectively and subjectively in Afan Oromo Language. The performance of the summarizers was measured based on subjective as well as objective evaluation methods. The techniques used in this paper are term frequency and sentence position methods with language specific lexicons to assign weights to the sentences to be extracted for the summary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.