Abstract
This paper presents a case study of implementing computational methods like Natural Language Processing (NLP) to perform Text Analytics and Visualization on political speech transcripts. The speech transcripts are published on websites, social media, and documents in large volumes and multiple languages. These transcripts are available in unstructured textual format and thus they are a part of big-data requiring analytics to derive insights from it. In this experiment, a significantly large volume of speech transcripts are analyzed and graphical visualizations are generated such as Lexical Dispersion Plot, Time Series Plot, WordCloud, Bar-Graphs using various Python libraries. The study has been useful in identifying issues highlighted across a large number of speech transcripts. So far, the linguists have tried to perform analysis using manual linguistic approaches which are extremely time-consuming and complex to understand the Political Discourse. Our experiment of applying NLP based text analytics proves to be a very efficient technique for Political Discourse Analysis (PDA).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.